
CORBA
with

Python
Dr Duncan Grisby
duncan@grisby.org

(These slides atwww.omniorb.org/~dpg1/python10 )



Outline

1. Introduction

2. What is CORBA?

3. CORBA myths

4. Python and CORBA

5. Facilities of CORBA

6. Comparison with web services

7. When to use CORBA

2



About me

� BA and PhD at the University of Cambridge
Computer Laboratory.

� Work for AT&T Laboratories Cambridge
(www.uk.research.att.com ).

� Working on CORBA systems — ways to make
CORBA easier to use.

� Main author of omniORBpy.

3



What is CORBA?

CommonObjectRequestBrokerArchitecture.
� i.e. a common architecture for object request

brokers.

� A framework for buildingobject oriented
distributed systems.

� Cross-platform.

� Language neutral.

� An extensive open standard, defined by the
Object Management Group.

– www.omg.org

4



Object Management Group

� Founded in 1989.

� The world’s largest software consortium with
around 800 member companies.

� Only providesspecifications, not
implementations.

� As well as CORBA core, specifies:

– Services: naming, trading, security, . . .

– Domains: telecoms, health-care, finance, . . .

– UML: Unified Modelling Language.

� All specifications are available for free.

5



CORBA Myths

� There are many myths about CORBA.

– Ignorance or malice?

� These myths taken from various places:

– ‘Understanding SOAP’, Kennard Scribner and Mark
Stiver.

– ‘Special Edition Using SOAP’, John Paul Mueller.

– www-106.ibm.com/developerworks/
webservices/library/ws-arc3/

– www.infoworld.com/articles/tc/xml/
01/07/16/010716tcsoap.xml

– . . .

6



CORBA Myths

Myth: CORBA is comparable to SOAP / XML-RPC.

Truth: SOAP and XML-RPC arewire protocols.
CORBA includes a wire protocol, GIOP, but it
also has an object model, an interface
definition language, standard language
mappings, standard services, . . .

CORBA client and server code isportable
between different CORBA implementations.

7



CORBA Myths

Myth: CORBA is too complex.

Truth: Distributed systems are fundamentally
complex things. CORBA does an amazingly
good job at managing that complexity for you.

8



CORBA Myths

Myth: CORBA is too hard to use.

Truth: CORBA makes simple things simple (see
example later). Complex things are only as
complex as they have to be, but there is an
inevitable learning curve.

Some language mappings are ugly (and so are
the languages). With Python, everything is
beautiful.

9



CORBA Myths

Myth: CORBA is bloated.

Truth: A good CORBA ORB is around 1 or 2 MB of
shared library code. If CORBA is too bloated
for your system, there’s a good chance Python
is too. Either way you look at it, it’s not
unnecessarilybloated.

10



CORBA Myths

Myth: CORBA is not interoperable.

Truth: CORBA reallyis interoperable.
Interoperability bugs are almost unheard-of.
People have been working on getting it right
since 1995.

11



CORBA Myths

Myth: CORBA is not Unicode aware.

Truth: CORBA has had a wstring type since 1997.
Some ORBs were slow to support it, but most
have it now.

12



CORBA Myths

Myth: CORBA is not ‘firewall friendly’.

Truth: CORBA uses IIOP, a protocol above TCP. It is
not hard for a service provider to open a
suitable port on a firewall.

The problem iscallbackobjects. They require
a connection back to the client. CORBA
partially solves this with bi-directional IIOP.

Remember that firewalls are put there for a
reason.

13



CORBA Myths

Myth: CORBA does not scale.

Truth: CORBA hasprovenscalability in real
applications. ORB designers have had many
years to work on this.

14



CORBA Myths

Myth: CORBA does not scale because IIOP is
‘stateful’.

Truth: CORBA clients and servers can decide to close
IIOP connections at any time.

Opening a TCP connection is expensive and
latency bound. Usually, youwant to cache
open connections.

15



CORBA Myths

Myth: CORBA does not support ‘loose coupling’.

Truth: CORBAdoessupport loose coupling, through
the Interface Repository, Dynamic Invocation
Interface, and Dynamic Skeleton Interface.

Almost nobody uses it. Loose coupling sounds
good until you try to use it.

16



CORBA Myths

Myth: CORBA is expensive.

Truth: Many open source ORBs: omniORB, ORBit,
MICO, TAO, JacORB, OpenORB, . . .

17



CORBA Myths

Myth: CORBA is not supported by scripting
languages.

Truth: All the major scripting languages have at least
one CORBA implementation. Python has four
implementations.

18



CORBA Myths

Myth: CORBA is obsolete.

Truth: CORBA is theonly solution for cross-
platform, cross-language, object-oriented
distributed systems.

The only question is whether your application
needs these things. . .

19



CORBA Myths

Truth: CORBA is not the current ‘in thing’.

Myth: That this matters.

Is it best to base your application on something
new, rapidly changing, untested, and in the
press, or on something mature and stable?

CORBA designers have had many years to
think about, and solve, problems that web
services designers are only just discovering.
Wheel reinvention is everywhere.

20



CORBA Myths

Myth: CORBA is the solution to all problems.

Truth: Of course it isn’t! Nothing ever is. A good
system designer chooses the best tools for the
job.

21



22



Python ORBs

� omniORBpy

– Based on C++ omniORB. Multi-threaded. Free (LGPL).

– www.omniorb.org/omniORBpy

� orbit-python

– Based on C ORBit. Single-threaded. Free (LGPL).

– projects.sault.org/orbit-python/

� Fnorb

– Mostly Python, with a small amount of C. Multi-threaded.
Newly open source (Python style). Back from dead?

– www.fnorb.com

� ILU

– Based on C ILU. More than just CORBA. Open source. Dead?

– ftp.parc.xerox.com/pub/ilu/ilu.html

23



A CORBA call

Client

Object
re

qu
es

t
re

pl
y

� A classical object model

– the client sends request messages to the
object; the object sends replies back.

� The client does not care where the
object is

– because the ORB deals with it.

� The client knows what messages it
can send, because the object has an
interface

– specified in CORBA IDL. . .

24



Interface Definition Language

� IDL forms a ‘contract’ between the client and
object.

� Mapped to the target language by anIDL
compiler.

� Strong typing.

� Influenced by C++ (braces and semicolons —
sorry!).

module Snake {
interface Adder {

long accumulate(in long a);
void reset();

};
};

25



Python client

>>> import sys, CORBA, Snake
>>> orb = CORBA.ORB_init(sys.argv, CORBA.ORB_ID)
>>> adder = orb.string_to_object("corbaname:rir:#adder.obj")
>>> adder.accumulate(5)
5
>>> adder.accumulate(6)
11
>>> adder.accumulate(42)
53
>>> adder.reset()
>>> adder.accumulate(10)
10

26



Python server
2 import sys, CORBA, CosNaming, Snake, Snake__POA
3

4 class Adder_i (Snake__POA.Adder):
5 def __init__(self):
6 self.value = 0
7

8 def accumulate(self, a):
9 self.value = self.value + a

10 return self.value
11

12 def reset(self):
13 self.value = 0
14

15 orb = CORBA.ORB_init(sys.argv, CORBA.ORB_ID)
16 poa = orb.resolve_initial_references("RootPOA")
17

18 adderServant = Adder_i()
19 poa.activate_object(adderServant)
20 adderObjref = adderServant._this()
21

22 nameRoot = orb.resolve_initial_references("NameService")
23 nameRoot = nameRoot._narrow(CosNaming.NamingContext)
24 name = [CosNaming.NameComponent("adder", "obj")]
25 nameRoot.rebind(name, adderObjref)
26

27 poa._get_the_POAManager().activate()
28 orb.run()

27



IDL Facilities

� All types and interfaces are specified in IDL.
� Base types:

– integers, floating point, strings, wide strings.

� Constructed types:

– enumerations, sequences, arrays, structures,
discriminated unions, fixed point, interfaces.

� Interfaces:

– operations, attributes, exceptions.

� Dynamic types:

– Any, TypeCode.

28



IDL Example
module Example {

struct Person {
string name;
unsigned short age;

};

enum DwellingKind { house, flat, cottage, castle };

struct Dwelling {
DwellingKind kind;
Person owner;
unsigned long number_of_rooms;

};

interface Auction {
readonly attribute Dwelling lot;
readonly attribute float high_bid;
boolean bid(in Person who, in float amount);

};

interface AuctionHouse {
Auction SellDwelling(in Dwelling to_sell, in float reserve);

};
};

29



IDL to Python

� Standard Python language mapping:

– www.omg.org/technology/documents/formal/
python_language_mapping.htm

� Map IDL to Python with anIDL compiler. . .

$ omniidl -bpython example.idl

� Use the mapped types from Python. . .
>>> import Example
>>> fred = Example.Person("Fred Bloggs", 42)
>>> residence = Example.Dwelling(Example.cottage, fred, 3)
>>> residence.number_of_rooms
3
>>> auctioneer = # Get AuctionHouse object from somewhere
>>> auction = auctioneer.SellDwelling(residence, 1000.0)
>>> auction.bid(Example.Person("Joe Smith", 28), 2000.0)
>>> auction._get_high_bid()
2000.0

30



ORB and POA

� The Object Request Broker (ORB) holds
everything together.

– Not a stand-alone process—library code in
all CORBA applications.

– Provides basis for network-transparency,
object model, etc.

� The Portable Object Adapter (POA) supports
server code.

– Supports activation ofservants—i.e.
implementation objects.

– On-demand activation, default servants,
flexible servant locators.

31



Standard CORBA services

� Naming

– Tree-based hierarchy of named objects.

– Supports federation.

� Notification

– Asynchronous event filtering, notification.

� Interface repository

– Run-time type discovery.

� Trading

– Object discovery by properties.

� Security, Transaction, Concurrency,
Persistence, Time, . . .

32



Web service comparison

� CORBA isobject-oriented

– Object references are first-class data types.

– Application entities can be modelled as
objects.

– Managing large numbers of objects can be
tricky.

� XML-RPC and SOAP areprocedural

– No implicit state in function calls.

– Using explicit state in all calls can become
tricky.

33



Web service comparison

� CORBA isstatically typed.

� XML-RPC and SOAP aredynamically typed.

� Dynamic typing in Python is (usually) a good
thing. What about in a distributed application?

– Dynamic typing can help rapid application
development. . .

– . . . but typeerrors change from being a
debugging issue to a security issue.

34



Dynamic type security
def credit_account(self, account_name, amount):

account = database.start_transaction(account_name)
account.balance = account.balance + amount
account.commit_transaction()

� With dynamic typing,amount might be a string,
not a number, so Python raises aTypeError

and the transaction is never committed!

� Web services code must therefore explicitly
check all types in application code.

� The CORBA run-time knows your IDL, so it
prevents this kind of error. The application can
safely assume the types it receives are what the
IDL said.

35



Web service comparison

� CORBA uses a compact binary format for
transmission.

– Efficient use of bandwidth.

– Easy to generate and parse.

� XML-RPC and SOAP use XML text.

– Egregious waste of bandwidth.

– Easy-ish to generate, computationally
expensive to parse.

– ‘Easy’ for a human to read

– not this human!

� CORBA is 10–100 times more compact,
100–500 times faster.

36



When to use CORBA

� Use CORBA if

– object orientation and complex types are
important.

– interoperability is important.

– performance is important.

– CORBA’s services solve many of your
problems.

� Use XML-RPC if

– your requirements arereally simple.

– performance is not a big issue.

37



When to use CORBA

� Use SOAP if

– you like tracking a moving ‘standard’ :-)

– you want to be buzzword-compliant.

� Use sockets if

– you need to stream binary data.

– you can’t affordany infrastructure.

� Use something else if

– it fits neatly with your application.

� Use a combination of things if

– it makes sense to do so.

38



Conclusion

� CORBA is here to stay.

� It is the best solution to many real-world
problems.

� The value of web services is not as a
replacement for CORBA, but an addition.

� Web services proponents could learn a lot from
CORBA, if only they looked.

39


