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About me

� BA and PhD at the University of Cambridge
Computer Laboratory.

� Worked at AT&T Laboratories Cambridge
before its closure in April 2002.

� Founder of Apasphere Ltd. Apasphere

– Interested in contract offers. . .

� Main author of omniORBpy

– but I’m trying very hard to be unbiased.
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Introduction

1. What is a distributed system?

2. Why would we want one?

3. Distributed system technologies

4. XML-RPC

5. SOAP

6. CORBA
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What is a distributed system?

� A system in which not all parts run in the same
address space. . .

– and normally across more than one
computer.

� Complex

– concurrency

– latency

– nasty failure modes

– . . .
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So why bother?

� There’s more than one computer in the world.
� They solve some real problems

– Distributed users

– Load balancing

– Fault tolerance

– Distributed computation

– . . .

� It’s a challenge.
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Technologies

� Sockets
� RPC

– Sun RPC, DCE, XML-RPC, SOAP

� Single language distributed objects

– Java RMI, DOPY, Pyro

� Cross-language distributed objects

– DCOM, CORBA

� Message-oriented middleware, mobile agents,
tuple spaces, . . .
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RPC — Remote Procedure Call

� Model networked interactions as procedure
calls.

– Natural model for many kinds of application.

– Totally inappropriate for some things.

� Considered at least as early as 1976

– White, J.E., A high-level framework for
network-based resource sharing,
Proceedings of the National Computer
Conference, June 1976.

� Requires: server addressing model, transport
protocol, data type marshalling.
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Object Oriented RPC

� Obvious extension of RPC to support objects.

– Exactly analogous to the difference between
procedural and object oriented programming.

� In a remote method call, choice of object is
implicit in the object reference.

� Object references are first class data types: they
can be sent as method arguments.

� Requires: object addressing model, transport
protocol, marshalling.
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What is XML-RPC?

� www.xmlrpc.com
� Very simple RPC protocol

– HTTP for server addressing and transport
protocol.

– XML messages for data type marshalling.

– Limited range of simple types.

� Stable specification

– Perhaps too stable.

� Implementations in many languages.

� Fork from an early version of SOAP. . .
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What is SOAP?

� It depends who you ask!

– Started life as an RPC protocol using
HTTP/XML.

– Moving away from that, towards a general
message framing scheme.

� As of SOAP 1.2, no longer stands for ‘Simple
Object Access Protocol’.

� www.w3c.org/2002/ws/

� A plethora of related specifications:

– XML Schema, WSDL, UDDI, . . .

� Specification and implementations in flux.
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Schemas, WSDL and UDDI

� XML Schema

– www.w3.org/XML/Schema
– Used in SOAP to define types.

� WSDL — Web Services Description Language

– www.w3.org/TR/wsdl
– Wraps up information about types, messages

and operations supported by a service, and
where to find the service.

� UDDI — Universal Description, Discovery and
Integration

– www.uddi.org
– Framework for describing, finding services.
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What is CORBA?

Common Object Request Broker Architecture.
� i.e. a common architecture for object request

brokers.

� A framework for building object oriented
distributed systems.

� Cross-platform, language neutral.

� Defines an object model, standard language
mappings, . . .

� An extensive open standard, defined by the
Object Management Group.

– www.omg.org
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Object Management Group

� Founded in 1989.
� The world’s largest software consortium with

around 800 member companies.

� Only provides specifications, not
implementations.

� As well as CORBA core, specifies:

– Services: naming, trading, security, . . .

– Domains: telecoms, health-care, finance, . . .

– UML: Unified Modelling Language.

– MDA: Model Driven Architecture.

� All specifications are available for free.
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Python XML-RPC

� xmlrpclib

– www.pythonware.com/products/
xmlrpc/

– Part of Python standard library since 2.2.

– Very Pythonic and easy-to-use.
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Python SOAP

� SOAP.py

– pywebsvcs.sourceforge.net
– Similar in style to xmlrpclib.

– Not actively maintained.

� ZSI, Zolera SOAP Infrastructure

– pywebsvcs.sourceforge.net again.

– Most flexible and powerful option.

– Currently not particularly Pythonic.
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Python SOAP cont’d

� SOAPy

– soapy.sourceforge.net
– Supports WSDL, XML Schema

– Client side only.

� 4Suite SOAP

– www.4suite.org
– Part of 4Suite Server.

– From the ‘SOAP as message framing’ camp.

– No RPC.
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Python CORBA

� omniORBpy

– omniorb.sourceforge.net
– Based on C++ omniORB. Multi-threaded.

– Most complete and standards-compliant.

� orbit-python

– orbit-python.sault.org
– Based on C ORBit. Single-threaded.

� Fnorb

– www.fnorb.org
– Pure Python (recent development).

– Dead for a long time.

– Newly open source (Python style).
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A simple example

1. Specification

2. XML-RPC implementation

3. SOAP implementation

4. CORBA implementation

5. Comparison
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Specification

� We want an ‘adder’ service with operations:

– add: add two integers.

– add_many: take a list of integers and return
their sum.

– accumulate: add a single argument to a
running total, return the new total.

– reset: reset the running total to zero.
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XML-RPC server
1 #!/usr/bin/env python
2 import operator, xmlrpclib, SimpleXMLRPCServer
3

4 class Adder_impl:
5 def __init__(self):
6 self.value = 0
7

8 def add(self, a, b):
9 return a + b

10

11 def add_many(self, a_list):
12 return reduce(operator.add, a_list, 0)
13

14 def accumulate(self, a):
15 self.value += a
16 return self.value
17

18 def reset(self):
19 self.value = 0
20 return xmlrpclib.True
21

22 adder = Adder_impl()
23 server = SimpleXMLRPCServer.SimpleXMLRPCServer(("", 8000))
24 server.register_instance(adder)
25 server.serve_forever()
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XML-RPC client

>>> import xmlrpclib
>>> adder = xmlrpclib.Server("http://server.host.name:8000/")
>>> adder.add(123, 456)
579
>>> adder.add("Hello ", "world")
’Hello world’
>>> adder.add_many([1,2,3,4,5])
15
>>> adder.add_many(range(100))
4950
>>> adder.accumulate(5)
5
>>> adder.accumulate(7)
12
>>> adder.reset()
<Boolean True at 819a97c>
>>> adder.accumulate(10)
10
>>> adder.accumulate(2.5)
12.5
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XML-RPC request

POST / HTTP/1.0
Host: pineapple:8000
User-Agent: xmlrpclib.py/1.0b4 (by www.pythonware.com)
Content-Type: text/xml
Content-Length: 191

<?xml version=’1.0’?>
<methodCall>
<methodName>add</methodName>
<params>
<param>
<value><int>123</int></value>
</param>
<param>
<value><int>456</int></value>
</param>
</params>
</methodCall>
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XML-RPC response

HTTP/1.0 200 OK
Server: BaseHTTP/0.2 Python/2.2c1
Date: Thu, 28 Feb 2002 10:47:05 GMT
Content-type: text/xml
Content-length: 123

<?xml version=’1.0’?>
<methodResponse>
<params>
<param>
<value><int>579</int></value>
</param>
</params>
</methodResponse>
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XML-RPC notes

� We didn’t have to tell XML-RPC the names of
the functions, or their argument types.

– Dynamic dispatch/typing just like Python.

– Not necessarily a good thing in a distributed
system. . .

� XML-RPC has no equivalent of None.

– reset() has to return something.
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SOAP server (SOAP.py)
1 #!/usr/bin/env python
2 import operator, SOAP
3

4 class Adder_impl:
5 def __init__(self):
6 self.value = 0
7

8 def add(self, a, b):
9 return a + b

10

11 def add_many(self, a_list):
12 return reduce(operator.add, a_list, 0)
13

14 def accumulate(self, a):
15 self.value += a
16 return self.value
17

18 def reset(self):
19 self.value = 0
20

21 adder = Adder_impl()
22 server = SOAP.SOAPServer(("", 8000))
23 server.registerObject(adder)
24 server.serve_forever()
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SOAP client

>>> import SOAP
>>> adder = SOAP.SOAPProxy("http://server.host.name:8000/")
>>> adder.add(123, 456)
579
>>> adder.add("Hello ", "world")
’Hello world’
>>> adder.add_many([1,2,3,4,5])
15
>>> adder.add_many(range(100))
4950
>>> adder.accumulate(5)
5
>>> adder.accumulate(7)
12
>>> adder.reset()
>>> adder.accumulate(10)
10
>>> adder.accumulate(2.5)
12.5
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SOAP request

POST / HTTP/1.0
Host: pineapple:8000
User-agent: SOAP.py 0.9.7 (actzero.com)
Content-type: text/xml; charset="UTF-8"
Content-length: 492
SOAPAction: ""

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope SOAP-ENV:encodingStyle="http://schemas.xm
lsoap.org/soap/encoding/" xmlns:SOAP-ENC="http://schemas.xml
soap.org/soap/encoding/" xmlns:xsi="http://www.w3.org/1999/X
MLSchema-instance" xmlns:SOAP-ENV="http://schemas.xmlsoap.or
g/soap/envelope/" xmlns:xsd="http://www.w3.org/1999/XMLSchem
a">
<SOAP-ENV:Body>
<add SOAP-ENC:root="1">
<v1 xsi:type="xsd:int">123</v1>
<v2 xsi:type="xsd:int">456</v2>
</add>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
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SOAP response
HTTP/1.0 200 OK
Server: <a href="http://www.actzero.com/solution.html">SOAP.
py 0.9.7</a> (Python 2.2c1)
Date: Thu, 28 Feb 2002 11:07:38 GMT
Content-type: text/xml; charset="UTF-8"
Content-length: 484

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope SOAP-ENV:encodingStyle="http://schemas.xm
lsoap.org/soap/encoding/" xmlns:SOAP-ENC="http://schemas.xml
soap.org/soap/encoding/" xmlns:xsi="http://www.w3.org/1999/X
MLSchema-instance" xmlns:SOAP-ENV="http://schemas.xmlsoap.or
g/soap/envelope/" xmlns:xsd="http://www.w3.org/1999/XMLSchem
a">
<SOAP-ENV:Body>
<addResponse SOAP-ENC:root="1">
<Result xsi:type="xsd:int">579</Result>
</addResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
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SOAP notes

� Dynamic dispatch/typing like XML-RPC.
� WSDL would allow us to specify function

names and types.

– Except that none of the Python SOAP
implementations support it fully.

� SOAP does have the equivalent of None.

� The SOAP encoding is much bigger and more
complex than the XML-RPC encoding.
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CORBA interface

� Types and interfaces must be defined.

– CORBA Interface Definition Language, IDL.

– Serves as formal documentation for the
service, too.

– Can be avoided if there’s a really good
reason.

1 module Snake {
2 interface Adder {
3 typedef sequence<long> LongSeq;
4

5 long add(in long a, in long b);
6 long add_many(in LongSeq a_list);
7 long accumulate(in long a);
8 void reset();
9 };

10 };
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CORBA server
1 #!/usr/bin/env python
2 import sys, operator, CORBA, Snake__POA
3

4 class Adder_impl(Snake__POA.Adder):
5 def __init__(self):
6 self.value = 0
7

8 def add(self, a, b):
9 return a + b

10

11 def add_many(self, a_list):
12 return reduce(operator.add, a_list, 0)
13

14 def accumulate(self, a):
15 self.value += a
16 return self.value
17

18 def reset(self):
19 self.value = 0
20

21 orb = CORBA.ORB_init(sys.argv)
22 poa = orb.resolve_initial_references("RootPOA")
23 obj = Adder_impl()._this()
24 print orb.object_to_string(obj)
25 poa._get_the_POAManager().activate()
26 orb.run()
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CORBA client

>>> import CORBA, Snake
>>> orb = CORBA.ORB_init()
>>> obj = orb.string_to_object("IOR:0100...")
>>> adder = obj._narrow(Snake.Adder)
>>> adder.add(123, 456)
579
>>> adder.add("Hello ", "world")
Traceback (most recent call last): ...
CORBA.BAD_PARAM: Minor: BAD_PARAM_WrongPythonType, COMPLETED_NO.
>>> adder.add_many([1,2,3,4,5])
15
>>> adder.add_many(range(100))
4950
>>> adder.accumulate(5)
5
>>> adder.accumulate(7)
12
>>> adder.reset()
>>> adder.accumulate(10)
10
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CORBA request/response

� CORBA uses an efficient binary format.

Request:

4749 4f50 0102 0100 3400 0000 0600 0000 GIOP....4.......
0300 0000 0000 0000 0e00 0000 fe25 177e .............%.~
3c00 0032 7500 0000 0000 0000 0400 0000 <..2u...........
6164 6400 0000 0000 7b00 0000 c801 0000 add.....{.......

Response:

4749 4f50 0102 0101 1000 0000 0600 0000 GIOP............
0000 0000 0000 0000 4302 0000 ........C...

� Tools like Ethereal (www.ethereal.com)
will pick it apart if you need to know what it
means.
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XML-RPC details

1. Types

2. Faults

3. Clients and servers

4. Extensions
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XML-RPC types

� Boolean

– xmlrpclib.True or xmlrpclib.False

� Integers

– Python int type.

� Floating point

– Python float type.

– Beware rounding errors!

� Strings

– Python string type.

– ASCII only.
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XML-RPC types

� Array

– Python sequence type (list, tuple) containing
‘conformable’ values.

� Struct

– Python dictionary with string keys,
‘conformable’ values.

� Date

– xmlrpclib.DateTime instance.

– Construct with seconds since epoch, time
tuple, ISO 8601 string.

� Binary

– xmlrpclib.Binary instance.

– Construct with string, read from data.
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XML-RPC faults

� Any server function can raise
xmlrpclib.Fault to indicate an error.

– Constructor takes integer fault code and a
human-readable fault string.

– Access with faultCode and faultString.

– Uncaught Python exceptions in server
functions are turned into Faults.

� The system may also raise xmlrpclib.

ProtocolError if the call failed for some
HTTP/TCP reason.
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XML-RPC clients

� Clients create a proxy to a server:

proxy = xmlrpclib.ServerProxy("http://host.name:[port][/path]")

� Method names may contain dots:

a = proxy.foo()
b = proxy.bar.baz.wibble()

� https accepted if your Python has SSL support:

proxy = xmlrpclib.ServerProxy("https://host.name:[port][/path]")
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XML-RPC servers

� SimpleXMLRPCServer included in Python 2.2:

server = SimpleXMLRPCServer.SimpleXMLRPCServer(("", port))

– Usually specify empty string as host name.
Use specific interface name/address to
restrict calls to a particular interface.

� Register an instance

instance = MyServerClass()
server.register_instance(instance)

– All of instance’s methods available (except
those prefixed with ‘_’).

– Sub-instances for dotted method names.

– Only one instance can be registered.
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XML-RPC servers

� Instance with a dispatch method:

class MyServer:
def _dispatch(method, params):

print "The method name was", method
# Do something to implement the method...

� Register separate functions:

server.register_function(pow)

def doit(a, b): return a - b
server.register_function(doit, "subtract")
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XML-RPC extensions

� www.xmlrpc.com/directory/1568/
services/xmlrpcExtensions

� system.listMethods

– return list of available functions.

� system.methodSignature

– return the signature of the specified method,
as a list of strings.

� system.methodHelp

– return a help string for the specified method.

� system.multiCall

– call a list of methods in sequence, returning
all the results.
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CORBA details

1. IDL and its Python mapping

2. CORBA object model

3. Object Request Broker

4. Portable Object Adapter
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Interface Definition Language

� IDL forms a ‘contract’ between the client and
object.

� Mapped to the target language by an IDL
compiler.

� Strong typing.

� Influenced by C++ (braces and semicolons —
sorry!).

module Snake {
interface Adder {
long accumulate(in long a);
void reset();

};
};
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IDL Facilities

� All types and interfaces are specified in IDL.
� Base types:

– integers, floating point, strings, wide strings.

� Constructed types:

– enumerations, sequences, arrays, structures,
discriminated unions, fixed point, interfaces.

� Interfaces:

– operations, attributes, exceptions.

� Dynamic types:

– Any, TypeCode.
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IDL Example
module Example {

struct Person {
string name;
unsigned short age;

};

enum DwellingKind { house, flat, cottage, castle };

struct Dwelling {
DwellingKind kind;
Person owner;
unsigned long number_of_rooms;

};

interface Auction {
readonly attribute Dwelling lot;
readonly attribute float high_bid;
boolean bid(in Person who, in float amount);

};

interface AuctionHouse {
Auction SellDwelling(in Dwelling to_sell, in float reserve);

};
};
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IDL to Python

� Standard Python language mapping:

– www.omg.org/technology/documents/formal/
python_language_mapping.htm

� Map IDL to Python with an IDL compiler. . .

$ omniidl -bpython example.idl

� Use the mapped types from Python. . .
>>> import Example
>>> fred = Example.Person("Fred Bloggs", 42)
>>> residence = Example.Dwelling(Example.cottage, fred, 3)
>>> residence.number_of_rooms
3
>>> auctioneer = # Get AuctionHouse object from somewhere
>>> auction = auctioneer.SellDwelling(residence, 1000.0)
>>> auction.bid(Example.Person("Joe Smith", 28), 2000.0)
>>> auction._get_high_bid()
2000.0
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ORB and POA

� The Object Request Broker (ORB) holds
everything together.

– Not a stand-alone process—library code in
all CORBA applications.

– Provides basis for network-transparency,
object model, etc.

� The Portable Object Adapter (POA) supports
server code.

– Supports activation of servants—i.e.
implementation objects.

– On-demand activation, default servants,
flexible servant locators.
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Standard CORBA services

� Naming

– Tree-based hierarchy of named objects.

– Supports federation.

� Notification

– Asynchronous event filtering, notification.

� Interface repository

– Run-time type discovery.

� Security

– Encryption, authentication, authorisation,
non-repudiation. . .

� Object trading, Transaction, Concurrency,
Persistence, Time, . . .
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Part two

Solving real
problems



Common Problems

1. Finding services/objects

2. Transferring bulk data

3. Event notification

4. State and session management
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Finding things

� Low-tech

– Hard-coded URIs.

– Write URIs / CORBA IORs to a file.

� Look-up by name

– CORBA Naming service.

– UDDI.

– Ad-hoc name service.

� Look-up by properties

– CORBA Trader service.

– UDDI.

– How do you know how to use it once you’ve
got it?
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Bulk data

� Lists / sequences

– Simple, but can’t cope with really large
items.

� Iterator pattern in CORBA.

struct GameInfo { string name; Game obj; };
typedef sequence <GameInfo> GameInfoSeq;

interface GameFactory {
...
GameInfoSeq listGames(in unsigned long how_many,

out GameIterator iter);
};
interface GameIterator {

GameInfoSeq next_n(in unsigned long how_many,
out boolean more);

void destroy();
};

� Socket transfer, FTP, etc.
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Event notification

� Blocking calls

– Return when event occurs.

– Interacts badly with timeouts.

� Callbacks

– Service calls client when event occurs.

– Firewall issues (CORBA bidir GIOP).

– Tricky with web services.

� CORBA Event / Notification services

– Push or pull transmission and reception.

– Event filtering.

– Manage scalability issues.

� MOM: IBM MQSeries, MSMQ, . . .
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State and session management

� How do you create and track server-side state?

– Don’t if you can help it!

– CORBA Factory pattern.

– RPC uses explicit cookies to identify state.

� How do you get rid of state?

– Distributed garbage collection is hard!

– No complete solution.

– Must think about it on a per-application
basis.

– Reference counting and pinging, evictor
pattern, timeouts, . . .
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Conclusion

1. Comparisons

2. My recommendations

3. General hints

4. Further resources
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Comparisons

� Like Python itself, XML-RPC and SOAP use
dynamic typing.

– Good for fast prototyping. . .

– . . . but can you really trust your clients?

– Distribution turns a debugging issue into a
security issue.

– Robust code has to check types everywhere.

� CORBA uses static interfaces and typing.

– Have to specify interfaces in advance.

– CORBA runtime checks types for you.

– You have to document the interfaces anyway.

– Any provides dynamic typing if you need it.
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Comparisons

� XML-RPC and SOAP only specify transfer
syntax.

– Different implementations use different
APIs.

– Not an issue with Python XML-RPC since
everyone uses xmlrpclib.

– Definitely an issue with SOAP.

� CORBA has standard language mappings and
object model.

– Python source code is portable between
different Python ORBs.

– Object model and API is the same for all
languages.
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Comparisons

� XML-RPC and SOAP are procedural

– Addressing on a per-server basis.

– No implicit state in function calls.

– Using explicit state in all calls can become
tricky.

� CORBA is object-oriented

– Object references are first-class data types.

– Application entities can be modelled as
objects.

– Managing large numbers of objects can be
tricky.
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Comparisons

� CORBA uses a compact binary format for
transmission.

– Efficient use of bandwidth.

– Easy to generate and parse.

� XML-RPC and SOAP use XML text.

– Egregious waste of bandwidth.

– Easy-ish to generate, computationally
expensive to parse.

– ‘Easy’ for a human to read

– not this human!

� CORBA is 10–100 times more compact,
100–500 times faster.
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My recommendations

� Use XML-RPC if

– your requirements are really simple.

– performance is not a big issue.

� Use CORBA if

– object orientation and complex types are
important.

– interoperability is important.

– performance is important.

– CORBA’s services solve many of your
problems.
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My recommendations

� Use SOAP if

– you like tracking a moving ‘standard’ :-)

– you want to be buzzword-compliant.

� Use sockets if

– you need to stream binary data.

– you can’t afford any infrastructure.

� Use something else if

– it fits neatly with your application.

� Use a combination of things if

– it makes sense to do so.
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General hints

� Design for distribution.

– Think carefully about latency.

– Often better to send data which may not be
needed than to have fine-grained interfaces.

� Use exceptions wisely (if the platforms
provides them).

� Avoid generic interfaces (e.g. ones which use
CORBA Any) if possible.

� Don’t forget security requirements!

� Write your code in Python!
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Further resources

� ‘Programming Web Services with XML-RPC’,
by Simon St. Laurent, Joe Johnston and Edd
Dumbill. O’Reilly.

� ‘Advanced CORBA Programming with C++’,
by Michi Henning and Steve Vinoski.
Addison-Wesley.

– Don’t be put off by the C++ in the title —
most of the content is applicable to any
language.

– Besides, it’s fun to see how much harder
things are for C++ users.
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CORBA resources

� Python CORBA tutorial

www.grisby.org/presentations/py10code.html

� CORBA IDL to Python language mapping,
www.omg.org/technology/documents/formal/

python_language_mapping.htm

� CORBA specifications,
www.omg.org/technology/documents/
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Conclusion

� There are a lot of options out there.

� Despite the web services hype, CORBA and
other established technologies are the best
solution to many real-world problems.

� The value of web services is not as a
replacement for CORBA, but an addition.

� Web services proponents could learn a lot from
CORBA, if only they looked.
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