
Distributed
Applications

with

Python
Dr Duncan Grisby

duncan@grisby.org

Part one

Technologies

Outline

1. Introduction

2. A simple example

3. XML-RPC details

4. CORBA details

5. Comparisons and summary

3

About me

� BA and PhD at the University of Cambridge
Computer Laboratory.

� Worked at AT&T Laboratories Cambridge
before its closure in April 2002.

� Founder of Apasphere Ltd. Apasphere

– Interested in contract offers. . .

� Main author of omniORBpy

– but I’m trying very hard to be unbiased.

4

Introduction

1. What is a distributed system?

2. Why would we want one?

3. Distributed system technologies

4. XML-RPC

5. SOAP

6. CORBA

5

What is a distributed system?

� A system in which not all parts run in the same
address space. . .

– and normally across more than one
computer.

� Complex

– concurrency

– latency

– nasty failure modes

– . . .

6

So why bother?

� There’s more than one computer in the world.
� They solve some real problems

– Distributed users

– Load balancing

– Fault tolerance

– Distributed computation

– . . .

� It’s a challenge.

7

Technologies

� Sockets
� RPC

– Sun RPC, DCE, XML-RPC, SOAP

� Single language distributed objects

– Java RMI, DOPY, Pyro

� Cross-language distributed objects

– DCOM, CORBA

� Message-oriented middleware, mobile agents,
tuple spaces, . . .

8

RPC — Remote Procedure Call

� Model networked interactions as procedure
calls.

– Natural model for many kinds of application.

– Totally inappropriate for some things.

� Considered at least as early as 1976

– White, J.E., A high-level framework for
network-based resource sharing,
Proceedings of the National Computer
Conference, June 1976.

� Requires: server addressing model, transport
protocol, data type marshalling.

9

Object Oriented RPC

� Obvious extension of RPC to support objects.

– Exactly analogous to the difference between
procedural and object oriented programming.

� In a remote method call, choice of object is
implicit in the object reference.

� Object references are first class data types: they
can be sent as method arguments.

� Requires: object addressing model, transport
protocol, marshalling.

10

What is XML-RPC?

� www.xmlrpc.com
� Very simple RPC protocol

– HTTP for server addressing and transport
protocol.

– XML messages for data type marshalling.

– Limited range of simple types.

� Stable specification

– Perhaps too stable.

� Implementations in many languages.

� Fork from an early version of SOAP. . .

11

What is SOAP?

� It depends who you ask!

– Started life as an RPC protocol using
HTTP/XML.

– Moving away from that, towards a general
message framing scheme.

� As of SOAP 1.2, no longer stands for ‘Simple
Object Access Protocol’.

� www.w3c.org/2002/ws/

� A plethora of related specifications:

– XML Schema, WSDL, UDDI, . . .

� Specification and implementations in flux.

12

Schemas, WSDL and UDDI

� XML Schema

– www.w3.org/XML/Schema
– Used in SOAP to define types.

� WSDL — Web Services Description Language

– www.w3.org/TR/wsdl
– Wraps up information about types, messages

and operations supported by a service, and
where to find the service.

� UDDI — Universal Description, Discovery and
Integration

– www.uddi.org
– Framework for describing, finding services.

13

What is CORBA?

Common Object Request Broker Architecture.
� i.e. a common architecture for object request

brokers.

� A framework for building object oriented
distributed systems.

� Cross-platform, language neutral.

� Defines an object model, standard language
mappings, . . .

� An extensive open standard, defined by the
Object Management Group.

– www.omg.org

14

Object Management Group

� Founded in 1989.
� The world’s largest software consortium with

around 800 member companies.

� Only provides specifications, not
implementations.

� As well as CORBA core, specifies:

– Services: naming, trading, security, . . .

– Domains: telecoms, health-care, finance, . . .

– UML: Unified Modelling Language.

– MDA: Model Driven Architecture.

� All specifications are available for free.

15

Python XML-RPC

� xmlrpclib

– www.pythonware.com/products/
xmlrpc/

– Part of Python standard library since 2.2.

– Very Pythonic and easy-to-use.

16

Python SOAP

� SOAP.py

– pywebsvcs.sourceforge.net
– Similar in style to xmlrpclib.

– Not actively maintained.

� ZSI, Zolera SOAP Infrastructure

– pywebsvcs.sourceforge.net again.

– Most flexible and powerful option.

– Currently not particularly Pythonic.

17

Python SOAP cont’d

� SOAPy

– soapy.sourceforge.net
– Supports WSDL, XML Schema

– Client side only.

� 4Suite SOAP

– www.4suite.org
– Part of 4Suite Server.

– From the ‘SOAP as message framing’ camp.

– No RPC.

18

Python CORBA

� omniORBpy

– omniorb.sourceforge.net
– Based on C++ omniORB. Multi-threaded.

– Most complete and standards-compliant.

� orbit-python

– orbit-python.sault.org
– Based on C ORBit. Single-threaded.

� Fnorb

– www.fnorb.org
– Pure Python (recent development).

– Dead for a long time.

– Newly open source (Python style).
19

A simple example

1. Specification

2. XML-RPC implementation

3. SOAP implementation

4. CORBA implementation

5. Comparison

20

Specification

� We want an ‘adder’ service with operations:

– add: add two integers.

– add_many: take a list of integers and return
their sum.

– accumulate: add a single argument to a
running total, return the new total.

– reset: reset the running total to zero.

21

XML-RPC server
1 #!/usr/bin/env python
2 import operator, xmlrpclib, SimpleXMLRPCServer
3

4 class Adder_impl:
5 def __init__(self):
6 self.value = 0
7

8 def add(self, a, b):
9 return a + b

10

11 def add_many(self, a_list):
12 return reduce(operator.add, a_list, 0)
13

14 def accumulate(self, a):
15 self.value += a
16 return self.value
17

18 def reset(self):
19 self.value = 0
20 return xmlrpclib.True
21

22 adder = Adder_impl()
23 server = SimpleXMLRPCServer.SimpleXMLRPCServer(("", 8000))
24 server.register_instance(adder)
25 server.serve_forever()

22

XML-RPC client

>>> import xmlrpclib
>>> adder = xmlrpclib.Server("http://server.host.name:8000/")
>>> adder.add(123, 456)
579
>>> adder.add("Hello ", "world")
’Hello world’
>>> adder.add_many([1,2,3,4,5])
15
>>> adder.add_many(range(100))
4950
>>> adder.accumulate(5)
5
>>> adder.accumulate(7)
12
>>> adder.reset()
<Boolean True at 819a97c>
>>> adder.accumulate(10)
10
>>> adder.accumulate(2.5)
12.5

23

XML-RPC request

POST / HTTP/1.0
Host: pineapple:8000
User-Agent: xmlrpclib.py/1.0b4 (by www.pythonware.com)
Content-Type: text/xml
Content-Length: 191

<?xml version=’1.0’?>
<methodCall>
<methodName>add</methodName>
<params>
<param>
<value><int>123</int></value>
</param>
<param>
<value><int>456</int></value>
</param>
</params>
</methodCall>

24

XML-RPC response

HTTP/1.0 200 OK
Server: BaseHTTP/0.2 Python/2.2c1
Date: Thu, 28 Feb 2002 10:47:05 GMT
Content-type: text/xml
Content-length: 123

<?xml version=’1.0’?>
<methodResponse>
<params>
<param>
<value><int>579</int></value>
</param>
</params>
</methodResponse>

25

XML-RPC notes

� We didn’t have to tell XML-RPC the names of
the functions, or their argument types.

– Dynamic dispatch/typing just like Python.

– Not necessarily a good thing in a distributed
system. . .

� XML-RPC has no equivalent of None.

– reset() has to return something.

26

SOAP server (SOAP.py)
1 #!/usr/bin/env python
2 import operator, SOAP
3

4 class Adder_impl:
5 def __init__(self):
6 self.value = 0
7

8 def add(self, a, b):
9 return a + b

10

11 def add_many(self, a_list):
12 return reduce(operator.add, a_list, 0)
13

14 def accumulate(self, a):
15 self.value += a
16 return self.value
17

18 def reset(self):
19 self.value = 0
20

21 adder = Adder_impl()
22 server = SOAP.SOAPServer(("", 8000))
23 server.registerObject(adder)
24 server.serve_forever()

27

SOAP client

>>> import SOAP
>>> adder = SOAP.SOAPProxy("http://server.host.name:8000/")
>>> adder.add(123, 456)
579
>>> adder.add("Hello ", "world")
’Hello world’
>>> adder.add_many([1,2,3,4,5])
15
>>> adder.add_many(range(100))
4950
>>> adder.accumulate(5)
5
>>> adder.accumulate(7)
12
>>> adder.reset()
>>> adder.accumulate(10)
10
>>> adder.accumulate(2.5)
12.5

28

SOAP request

POST / HTTP/1.0
Host: pineapple:8000
User-agent: SOAP.py 0.9.7 (actzero.com)
Content-type: text/xml; charset="UTF-8"
Content-length: 492
SOAPAction: ""

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope SOAP-ENV:encodingStyle="http://schemas.xm
lsoap.org/soap/encoding/" xmlns:SOAP-ENC="http://schemas.xml
soap.org/soap/encoding/" xmlns:xsi="http://www.w3.org/1999/X
MLSchema-instance" xmlns:SOAP-ENV="http://schemas.xmlsoap.or
g/soap/envelope/" xmlns:xsd="http://www.w3.org/1999/XMLSchem
a">
<SOAP-ENV:Body>
<add SOAP-ENC:root="1">
<v1 xsi:type="xsd:int">123</v1>
<v2 xsi:type="xsd:int">456</v2>
</add>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

29

SOAP response
HTTP/1.0 200 OK
Server: SOAP.
py 0.9.7 (Python 2.2c1)
Date: Thu, 28 Feb 2002 11:07:38 GMT
Content-type: text/xml; charset="UTF-8"
Content-length: 484

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope SOAP-ENV:encodingStyle="http://schemas.xm
lsoap.org/soap/encoding/" xmlns:SOAP-ENC="http://schemas.xml
soap.org/soap/encoding/" xmlns:xsi="http://www.w3.org/1999/X
MLSchema-instance" xmlns:SOAP-ENV="http://schemas.xmlsoap.or
g/soap/envelope/" xmlns:xsd="http://www.w3.org/1999/XMLSchem
a">
<SOAP-ENV:Body>
<addResponse SOAP-ENC:root="1">
<Result xsi:type="xsd:int">579</Result>
</addResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

30

SOAP notes

� Dynamic dispatch/typing like XML-RPC.
� WSDL would allow us to specify function

names and types.

– Except that none of the Python SOAP
implementations support it fully.

� SOAP does have the equivalent of None.

� The SOAP encoding is much bigger and more
complex than the XML-RPC encoding.

31

CORBA interface

� Types and interfaces must be defined.

– CORBA Interface Definition Language, IDL.

– Serves as formal documentation for the
service, too.

– Can be avoided if there’s a really good
reason.

1 module Snake {
2 interface Adder {
3 typedef sequence<long> LongSeq;
4

5 long add(in long a, in long b);
6 long add_many(in LongSeq a_list);
7 long accumulate(in long a);
8 void reset();
9 };

10 };

32

CORBA server
1 #!/usr/bin/env python
2 import sys, operator, CORBA, Snake__POA
3

4 class Adder_impl(Snake__POA.Adder):
5 def __init__(self):
6 self.value = 0
7

8 def add(self, a, b):
9 return a + b

10

11 def add_many(self, a_list):
12 return reduce(operator.add, a_list, 0)
13

14 def accumulate(self, a):
15 self.value += a
16 return self.value
17

18 def reset(self):
19 self.value = 0
20

21 orb = CORBA.ORB_init(sys.argv)
22 poa = orb.resolve_initial_references("RootPOA")
23 obj = Adder_impl()._this()
24 print orb.object_to_string(obj)
25 poa._get_the_POAManager().activate()
26 orb.run()

33

CORBA client

>>> import CORBA, Snake
>>> orb = CORBA.ORB_init()
>>> obj = orb.string_to_object("IOR:0100...")
>>> adder = obj._narrow(Snake.Adder)
>>> adder.add(123, 456)
579
>>> adder.add("Hello ", "world")
Traceback (most recent call last): ...
CORBA.BAD_PARAM: Minor: BAD_PARAM_WrongPythonType, COMPLETED_NO.
>>> adder.add_many([1,2,3,4,5])
15
>>> adder.add_many(range(100))
4950
>>> adder.accumulate(5)
5
>>> adder.accumulate(7)
12
>>> adder.reset()
>>> adder.accumulate(10)
10

34

CORBA request/response

� CORBA uses an efficient binary format.

Request:

4749 4f50 0102 0100 3400 0000 0600 0000 GIOP....4.......
0300 0000 0000 0000 0e00 0000 fe25 177e%.~
3c00 0032 7500 0000 0000 0000 0400 0000 <..2u...........
6164 6400 0000 0000 7b00 0000 c801 0000 add.....{.......

Response:

4749 4f50 0102 0101 1000 0000 0600 0000 GIOP............
0000 0000 0000 0000 4302 0000C...

� Tools like Ethereal (www.ethereal.com)
will pick it apart if you need to know what it
means.

35

XML-RPC details

1. Types

2. Faults

3. Clients and servers

4. Extensions

36

XML-RPC types

� Boolean

– xmlrpclib.True or xmlrpclib.False

� Integers

– Python int type.

� Floating point

– Python float type.

– Beware rounding errors!

� Strings

– Python string type.

– ASCII only.

37

XML-RPC types

� Array

– Python sequence type (list, tuple) containing
‘conformable’ values.

� Struct

– Python dictionary with string keys,
‘conformable’ values.

� Date

– xmlrpclib.DateTime instance.

– Construct with seconds since epoch, time
tuple, ISO 8601 string.

� Binary

– xmlrpclib.Binary instance.

– Construct with string, read from data.
38

XML-RPC faults

� Any server function can raise
xmlrpclib.Fault to indicate an error.

– Constructor takes integer fault code and a
human-readable fault string.

– Access with faultCode and faultString.

– Uncaught Python exceptions in server
functions are turned into Faults.

� The system may also raise xmlrpclib.

ProtocolError if the call failed for some
HTTP/TCP reason.

39

XML-RPC clients

� Clients create a proxy to a server:

proxy = xmlrpclib.ServerProxy("http://host.name:[port][/path]")

� Method names may contain dots:

a = proxy.foo()
b = proxy.bar.baz.wibble()

� https accepted if your Python has SSL support:

proxy = xmlrpclib.ServerProxy("https://host.name:[port][/path]")

40

XML-RPC servers

� SimpleXMLRPCServer included in Python 2.2:

server = SimpleXMLRPCServer.SimpleXMLRPCServer(("", port))

– Usually specify empty string as host name.
Use specific interface name/address to
restrict calls to a particular interface.

� Register an instance

instance = MyServerClass()
server.register_instance(instance)

– All of instance’s methods available (except
those prefixed with ‘_’).

– Sub-instances for dotted method names.

– Only one instance can be registered.

41

XML-RPC servers

� Instance with a dispatch method:

class MyServer:
def _dispatch(method, params):

print "The method name was", method
Do something to implement the method...

� Register separate functions:

server.register_function(pow)

def doit(a, b): return a - b
server.register_function(doit, "subtract")

42

XML-RPC extensions

� www.xmlrpc.com/directory/1568/
services/xmlrpcExtensions

� system.listMethods

– return list of available functions.

� system.methodSignature

– return the signature of the specified method,
as a list of strings.

� system.methodHelp

– return a help string for the specified method.

� system.multiCall

– call a list of methods in sequence, returning
all the results.

43

CORBA details

1. IDL and its Python mapping

2. CORBA object model

3. Object Request Broker

4. Portable Object Adapter

44

Interface Definition Language

� IDL forms a ‘contract’ between the client and
object.

� Mapped to the target language by an IDL
compiler.

� Strong typing.

� Influenced by C++ (braces and semicolons —
sorry!).

module Snake {
interface Adder {
long accumulate(in long a);
void reset();

};
};

45

IDL Facilities

� All types and interfaces are specified in IDL.
� Base types:

– integers, floating point, strings, wide strings.

� Constructed types:

– enumerations, sequences, arrays, structures,
discriminated unions, fixed point, interfaces.

� Interfaces:

– operations, attributes, exceptions.

� Dynamic types:

– Any, TypeCode.

46

IDL Example
module Example {

struct Person {
string name;
unsigned short age;

};

enum DwellingKind { house, flat, cottage, castle };

struct Dwelling {
DwellingKind kind;
Person owner;
unsigned long number_of_rooms;

};

interface Auction {
readonly attribute Dwelling lot;
readonly attribute float high_bid;
boolean bid(in Person who, in float amount);

};

interface AuctionHouse {
Auction SellDwelling(in Dwelling to_sell, in float reserve);

};
};

47

IDL to Python

� Standard Python language mapping:

– www.omg.org/technology/documents/formal/
python_language_mapping.htm

� Map IDL to Python with an IDL compiler. . .

$ omniidl -bpython example.idl

� Use the mapped types from Python. . .
>>> import Example
>>> fred = Example.Person("Fred Bloggs", 42)
>>> residence = Example.Dwelling(Example.cottage, fred, 3)
>>> residence.number_of_rooms
3
>>> auctioneer = # Get AuctionHouse object from somewhere
>>> auction = auctioneer.SellDwelling(residence, 1000.0)
>>> auction.bid(Example.Person("Joe Smith", 28), 2000.0)
>>> auction._get_high_bid()
2000.0

48

ORB and POA

� The Object Request Broker (ORB) holds
everything together.

– Not a stand-alone process—library code in
all CORBA applications.

– Provides basis for network-transparency,
object model, etc.

� The Portable Object Adapter (POA) supports
server code.

– Supports activation of servants—i.e.
implementation objects.

– On-demand activation, default servants,
flexible servant locators.

49

Standard CORBA services

� Naming

– Tree-based hierarchy of named objects.

– Supports federation.

� Notification

– Asynchronous event filtering, notification.

� Interface repository

– Run-time type discovery.

� Security

– Encryption, authentication, authorisation,
non-repudiation. . .

� Object trading, Transaction, Concurrency,
Persistence, Time, . . .

50

Part two

Solving real
problems

Common Problems

1. Finding services/objects

2. Transferring bulk data

3. Event notification

4. State and session management

52

Finding things

� Low-tech

– Hard-coded URIs.

– Write URIs / CORBA IORs to a file.

� Look-up by name

– CORBA Naming service.

– UDDI.

– Ad-hoc name service.

� Look-up by properties

– CORBA Trader service.

– UDDI.

– How do you know how to use it once you’ve
got it?

53

Bulk data

� Lists / sequences

– Simple, but can’t cope with really large
items.

� Iterator pattern in CORBA.

struct GameInfo { string name; Game obj; };
typedef sequence <GameInfo> GameInfoSeq;

interface GameFactory {
...
GameInfoSeq listGames(in unsigned long how_many,

out GameIterator iter);
};
interface GameIterator {

GameInfoSeq next_n(in unsigned long how_many,
out boolean more);

void destroy();
};

� Socket transfer, FTP, etc.
54

Event notification

� Blocking calls

– Return when event occurs.

– Interacts badly with timeouts.

� Callbacks

– Service calls client when event occurs.

– Firewall issues (CORBA bidir GIOP).

– Tricky with web services.

� CORBA Event / Notification services

– Push or pull transmission and reception.

– Event filtering.

– Manage scalability issues.

� MOM: IBM MQSeries, MSMQ, . . .
55

State and session management

� How do you create and track server-side state?

– Don’t if you can help it!

– CORBA Factory pattern.

– RPC uses explicit cookies to identify state.

� How do you get rid of state?

– Distributed garbage collection is hard!

– No complete solution.

– Must think about it on a per-application
basis.

– Reference counting and pinging, evictor
pattern, timeouts, . . .

56

Conclusion

1. Comparisons

2. My recommendations

3. General hints

4. Further resources

57

Comparisons

� Like Python itself, XML-RPC and SOAP use
dynamic typing.

– Good for fast prototyping. . .

– . . . but can you really trust your clients?

– Distribution turns a debugging issue into a
security issue.

– Robust code has to check types everywhere.

� CORBA uses static interfaces and typing.

– Have to specify interfaces in advance.

– CORBA runtime checks types for you.

– You have to document the interfaces anyway.

– Any provides dynamic typing if you need it.

58

Comparisons

� XML-RPC and SOAP only specify transfer
syntax.

– Different implementations use different
APIs.

– Not an issue with Python XML-RPC since
everyone uses xmlrpclib.

– Definitely an issue with SOAP.

� CORBA has standard language mappings and
object model.

– Python source code is portable between
different Python ORBs.

– Object model and API is the same for all
languages.

59

Comparisons

� XML-RPC and SOAP are procedural

– Addressing on a per-server basis.

– No implicit state in function calls.

– Using explicit state in all calls can become
tricky.

� CORBA is object-oriented

– Object references are first-class data types.

– Application entities can be modelled as
objects.

– Managing large numbers of objects can be
tricky.

60

Comparisons

� CORBA uses a compact binary format for
transmission.

– Efficient use of bandwidth.

– Easy to generate and parse.

� XML-RPC and SOAP use XML text.

– Egregious waste of bandwidth.

– Easy-ish to generate, computationally
expensive to parse.

– ‘Easy’ for a human to read

– not this human!

� CORBA is 10–100 times more compact,
100–500 times faster.

61

My recommendations

� Use XML-RPC if

– your requirements are really simple.

– performance is not a big issue.

� Use CORBA if

– object orientation and complex types are
important.

– interoperability is important.

– performance is important.

– CORBA’s services solve many of your
problems.

62

My recommendations

� Use SOAP if

– you like tracking a moving ‘standard’ :-)

– you want to be buzzword-compliant.

� Use sockets if

– you need to stream binary data.

– you can’t afford any infrastructure.

� Use something else if

– it fits neatly with your application.

� Use a combination of things if

– it makes sense to do so.

63

General hints

� Design for distribution.

– Think carefully about latency.

– Often better to send data which may not be
needed than to have fine-grained interfaces.

� Use exceptions wisely (if the platforms
provides them).

� Avoid generic interfaces (e.g. ones which use
CORBA Any) if possible.

� Don’t forget security requirements!

� Write your code in Python!

64

Further resources

� ‘Programming Web Services with XML-RPC’,
by Simon St. Laurent, Joe Johnston and Edd
Dumbill. O’Reilly.

� ‘Advanced CORBA Programming with C++’,
by Michi Henning and Steve Vinoski.
Addison-Wesley.

– Don’t be put off by the C++ in the title —
most of the content is applicable to any
language.

– Besides, it’s fun to see how much harder
things are for C++ users.

65

CORBA resources

� Python CORBA tutorial

www.grisby.org/presentations/py10code.html

� CORBA IDL to Python language mapping,
www.omg.org/technology/documents/formal/

python_language_mapping.htm

� CORBA specifications,
www.omg.org/technology/documents/

66

Conclusion

� There are a lot of options out there.

� Despite the web services hype, CORBA and
other established technologies are the best
solution to many real-world problems.

� The value of web services is not as a
replacement for CORBA, but an addition.

� Web services proponents could learn a lot from
CORBA, if only they looked.

67

