
CORBA
features for

large-scale application

development
Dr Duncan Grisby

dgrisby@apasphere.com

www.grisby.org/presentations/

Outline

1. Introduction

2. What is CORBA?

3. Object model

4. Object references

5. Simple object activation

6. Database access

7. Stateless adapters

2

About me

� BA and PhD at the University of Cambridge
Computer Laboratory.

� Worked at AT&T Laboratories Cambridge until
its closure in 2002.

� Founder of Apasphere Ltd. Apasphere

– Consultancy, omniORB commercial support.

� Co-founder of Tideway Systems Ltd.

– Tools to understand distributed applications.

� Lead developer of omniORB.

3

What is CORBA?

Common Object Request Broker Architecture.
� i.e. a common architecture for object request

brokers.

� A framework for building object oriented
distributed systems.

� Cross-platform.

� Language neutral.

� An extensive open standard, defined by the
Object Management Group.

– www.omg.org

4

Resources

� ‘Advanced CORBA Programming with C++’
by Michi Henning and Steve Vinoski.

� CORBA 2.6 specification.
www.omg.org/cgi-bin/doc?formal/01-12-01

� Python language mapping specification.
www.omg.org/cgi-bin/doc?formal/02-11-05

� omniORB manual.
omniorb.sourceforge.net/docs/

� www.grisby.org/presentations/

5

Object model

Client

Object
re

qu
es

t
re

pl
y

� A classical object model

– the client sends request messages to the
object; the object sends replies back.

� The client does not care where the
object is

– because the ORB deals with it.

� The client knows what messages it
can send, because the object has an
interface

– specified in CORBA IDL.

� What is an object?. . .

6

Object model

� Often, a CORBA object is simply a
programming language object which is
remotely accessible.

� But really, an object is a virtual entity.

� In general, an object’s existence may be
independent of:

– Clients holding references
– References elsewhere
– Operation invocations
– Implementation objects (servants)
– Server processes

7

Object references

� Clients access objects through object
references.

� An object reference contains sufficient
information to locate the object.

� The object may not exist

– at the moment
– ever.

� Refers to a single object.

� An object may have many references to it.

� Analogous to a pointer in C++.

8

Inside object references

� Look inside a stringified object reference with
omniORB’s catior or similar tools.

� IOR contains:

– Type id.
– IIOP version.
– Host and port for the server.
– Object key.
– Various other things.

� Object keys are opaque to clients.

� Object adapters map object keys to servants.

� The Portable Object Adapter (POA) is the
standard object adapter.

9

Simple dispatch

POA Obj. id
Object key

POA table

POA

Active Object
Map

Servant

� Activated object found in the POA’s Active
Object Map (AOM).

10

Simple dispatch

� Simple dispatch with individual activated
objects is good for many things.

– Easy to set up.
– Easy to understand.
– Efficient.

� But imagine you have a relational database with
millions of rows.

– and you want each row to be a CORBA
object.

� A ‘default servant’ can help. . .

11

Default servant

POA Obj. id
Object key

POA table

POA

Active Object
Map

Default
Servant

Current

� No AOM, or id not in AOM.

� Current object knows what id was requested.

12

Default servant

� The default servant is used for objects not
found in the AOM.

� Ask the Current object for the current object id,
(or object reference, or servant).

– Current is always available, but most useful
here.

� Common pattern is to use database primary
keys as object ids, then do a database lookup on
each CORBA call.

� What if you want to cache database records?

– Use a Servant Activator. . .

13

Servant Activator

POA Obj. id
Object key

POA table

POA

Active Object
Map

Servant
Activator

Servant

� id not in AOM.

� Servant Activator incarnates servant.

14

Servant Activator

� Upon a request for an id not in the AOM, the
Servant Activator incarnates a servant.

� Once incarnated, it is in the AOM.

– Future calls go directly to the servant.

� Later on, a timeout or other event can
deactivate the object.

– The Servant Activator etherealizes it.

� POA hides lots of nasty concurrency issues.

� Alternative is a Servant Locator.

– preinvoke / postinvoke called for every call.
– Locator maintains its own set of servants.

15

Stateless adapting proxies

� Sometimes want to ‘adapt’ one interface to
another.

� Notice that object id can have arbitrary
contents.

� Store object reference to proxied object in
object id of proxy.

� Use default servant to retrieve object reference
and make proxied call.

� No state in the proxies.

� Can use for non-adapting proxies too, e.g.
firewall traversal.

16

Other POA features

� Single / main thread policies.
� Transient policy to guarantee id uniqueness.

� Multiple activations for a single servant.

� State management: active, holding, discarding.

� Adapter Activators.

17

Servant Activator example
import CORBA, PortableServer__POA
from PortableServer import USER_ID, RETAIN
from PortableServer import USE_SERVANT_MANAGER, PERSISTENT

servantList = []

class ServantActivator_i (PortableServer__POA.
ServantActivator):

def incarnate(self, oid, poa):
servant = DatabaseServant(oid)
servantList.append(servant)
return servant

def etherealize(self, oid, poa, servant,
cleanup, remaining):

servant.flushState()

18

Servant Activator example
class Scavenger (threading.Thread):

def __init__(self):
threading.Thread.__init__(self)
self.setDaemon(1)

def run(self):
while 1:

time.sleep(10)
for s in servantList[:]:

if s.inactive():
poa.deactivate_object(s.oid())
servantList.remove(s)

19

Servant Activator example
class DatabaseServant (Database__POA.RowObject):

def __init__(self, oid):
self._oid = oid
self._use = 1
... read state from database

def inactive(self):
if self._use:

self._use = 0
return 0

else:
return 1

def flushState(self):
... write state to database

def readRecord(self):
self._use = 1
...

20

Servant Activator example
def main(argv):

orb = CORBA.ORB_init(argv)
rp = orb.resolve_initial_references("RootPOA")
poaManager = rp._get_the_POAManager()
poaManager.activate()

ps = [rp.create_id_assignment_policy(USER_ID),
rp.create_servant_retention_policy(RETAIN),
rp.create_request_processing_policy(USE_SERVANT_MANAGER),
rp.create_lifespan_policy(PERSISTENT)]

poa = rp.create_POA("DatabasePOA", poaManager, ps)
sa = ServantActivator_i()
poa.set_servant_manager(sa._this())

scavenger = Scavenger()
scavenger.start()

orb.run()
21

22

